

Journal of Health Physiotherapy and Orthopaedics

Research Article

Development of predictive models for personalized drug dosing in pediatrics

Mayank Pandey*, Srijan Pandey, Khushi Patel, Unnati Kesharwani

Shri Ram Institute of Technology Pharmacy, Jabalpur, Madhya Pradesh, India

Corresponding author: Pandey Mayank✉ mmayankpandey1@gmail.com, **Orcid Id:** <https://orcid.org/>

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by-nc/4.0/>). See <https://ijtinnovation.com/reprints-and-permissions> for full terms and conditions.

Received - 12-12-2024, Revised - 15-12-2024, Accepted - 20-12-2024 (DD-MM-YYYY)

Refer this article

Mayank Pandey, Srijan Pandey, Khushi Patel, Unnati Kesharwani, Development of Predictive Models for Personalized Drug Dosing in Journal of health physiotherapy and orthopaedics, March-April 2025, V 1 - I 1, Pages - 0011 – 0014. Doi: <https://doi.org/10.55522/jhpo.V2I2.0021>.

ABSTRACT

The safe and effective use of medications in pediatric populations presents unique challenges due to the physiological differences between children and adults. Standardized dosing regimens often fail to account for the variability in drug metabolism, distribution, and elimination in children. Personalized drug dosing, based on individual patient characteristics, is increasingly recognized as an essential strategy for improving therapeutic outcomes and minimizing adverse effects. The application of artificial intelligence (AI) and machine learning (ML) models has gained significant attention in recent years as potential solutions for developing predictive models for personalized drug dosing in pediatrics. By utilizing Big Data from electronic health records (EHRs), genetic data, and pharmacokinetic/pharmacodynamic (PK/PD) models, these models aim to optimize drug dosage based on a child's unique clinical and genetic profile. This review explores the development, challenges, and current applications of predictive models for personalized pediatric drug dosing, highlighting the role of AI, ML, and Big Data in advancing this field. We also discuss the future potential of these technologies in enhancing pediatric pharmacotherapy and improving patient safety.

Keywords: Personalized drug dosing, Pediatrics, Artificial intelligence, Machine learning, Pharmacokinetics, Pharmacodynamics, Predictive modeling, Big data, Genetic data, Electronic health records

INTRODUCTION

Pediatric pharmacotherapy is inherently challenging due to the dynamic and diverse physiological changes that occur throughout childhood. Children exhibit considerable differences in drug absorption, distribution, metabolism, and elimination compared to adults, influenced by factors such as age, weight, gender, organ maturity, and genetic factors (Kearns et al., 2018). Moreover, the lack of pediatric-specific data in clinical trials often leads to the extrapolation of adult dosing guidelines to pediatric populations, which can result in suboptimal therapeutic outcomes or adverse drug reactions (ADR) (Kirkham et al., 2019).

Given these challenges, the development of

personalized drug dosing systems has gained prominence as a way to tailor drug therapies to individual pediatric patients. Personalized medicine seeks to optimize treatment efficacy and safety by considering a patient's unique characteristics, such as genetic profile, age, weight, and underlying medical conditions (Jones et al., 2020). The integration of artificial intelligence (AI), machine learning (ML), and Big Data analytics into this domain has shown considerable promise. By analyzing large datasets from electronic health records (EHRs), genetic information, and drug-specific pharmacokinetic (PK) and pharmacodynamic (PD) models, predictive models can be developed to recommend personalized drug dosages that are more likely to achieve

optimal therapeutic outcomes in pediatric patients (Lee et al., 2020).

This paper reviews the current state of predictive modeling for personalized pediatric drug dosing, examines the methodologies employed, and explores the challenges and opportunities associated with the integration of AI, ML, and Big Data in pediatric pharmacotherapy [1].

MATERIALS AND METHODS

Data Sources

Predictive models for personalized drug dosing rely on the integration of various data sources to capture the complexity of pediatric pharmacology. The following datasets are particularly important in this context:

Electronic Health Records (EHRs)

EHRs contain critical patient information, including demographic details, medical history, medication prescriptions, laboratory results, and clinical observations. These data are essential for developing personalized dosing recommendations, as they provide insights into the patient's health status, comorbidities, and previous treatment outcomes (Zhang et al., 2021). By analyzing large-scale pediatric EHR datasets, it is possible to identify patterns and correlations between individual characteristics and drug responses [2].

Genetic Data

Pharmacogenomic data offer insights into how genetic variations influence drug metabolism and response. Children with different genetic profiles may metabolize drugs differently, affecting their therapeutic efficacy and safety. The integration of genetic data into predictive models can help identify patients at risk of adverse drug reactions (ADRs) or those who may benefit from altered dosing regimens (Zhou et al., 2020). Pharmacogenomic databases, such as the Pharmacogenomics Knowledge Base (PharmGKB), provide valuable information for tailoring drug therapies based on genetic variants [3].

Pharmacokinetic (PK) and Pharmacodynamic (PD) Models

PK and PD models describe how a drug behaves in the body over time and its effects on the body, respectively. These models are critical for understanding drug absorption, distribution, metabolism, and excretion (ADME) in pediatric patients, which may differ significantly from adults. These models help inform dosing regimens by predicting how drug concentrations will vary with changes in patient characteristics such as age, weight, and organ

function [4].

Clinical Trial Data

While pediatric clinical trials are often limited, they provide invaluable data on the safety and efficacy of drugs in children. Such data can be used to inform predictive models, helping to identify drugs that may require dose adjustments based on the pediatric population's specific needs.

Big Data Analytics

Real-time data from wearable devices, mobile health applications, and longitudinal studies offer a wealth of information that can be used to refine predictive models. These technologies allow for continuous monitoring of a child's physiological parameters, providing real-time insights into how they respond to drug treatments.

Machine Learning Models for Predictive Dosing

Machine learning algorithms form the backbone of predictive models for personalized pediatric drug dosing. Several machine learning techniques have been applied to this problem:

Supervised Learning

Algorithms such as Random Forests, Support Vector Machines (SVM), and Gradient Boosting are used to develop models that predict the optimal drug dose based on historical data. These models require labeled data, where the correct drug dose for a particular patient is known. The models are trained on datasets containing patient characteristics (e.g., age, weight, genetic profile) and their associated drug responses.

Deep Learning

Deep learning models, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), are increasingly used to process complex and high-dimensional datasets. These models are effective in identifying intricate patterns and relationships between a child's clinical data and the optimal drug dose.

Reinforcement Learning

Reinforcement learning algorithms have also been applied to optimize pediatric drug dosing. These algorithms learn by receiving feedback on the actions (i.e., drug doses) they take. Over time, reinforcement learning models can adjust dosing recommendations based on real-time outcomes, thereby improving personalized treatment strategies.

Ensemble Learning

Ensemble methods, which combine multiple

machine learning models to improve prediction accuracy, have been used in pediatric pharmacotherapy to refine dosing recommendations. Techniques such as bagging and boosting are commonly applied to increase the robustness of predictive models [5].

Data Preprocessing and Feature Engineering

Data preprocessing plays a critical role in improving the performance of predictive models. Missing values, outliers, and inconsistent data need to be addressed to ensure high-quality input data for machine learning algorithms. Feature engineering involves selecting relevant patient features (e.g., age, weight, genetic variants, drug history) and transforming raw data into a format that can be easily interpreted by machine learning models.

RESULTS AND DISCUSSION

Applications of Predictive Models in Pediatric Drug Dosing

Several studies have demonstrated the efficacy of predictive models in optimizing pediatric drug dosing. For instance, developed a machine learning-based model to predict the optimal dosing of antibiotics in pediatric patients with varying degrees of renal function. The model successfully identified personalized dosing strategies that minimized the risk of toxicity while maintaining therapeutic efficacy. Similarly, used a pharmacokinetic model integrated with genetic data to predict individualized dosing regimens for chemotherapy drugs in pediatric cancer patients [6].

Challenges in Pediatric Drug Dosing

While AI and machine learning have shown great promise in developing personalized drug dosing strategies, several challenges remain:

Limited Pediatric Data

The availability of high-quality pediatric data remains a significant limitation. Most pharmacokinetic and pharmacodynamic studies are conducted in adults, and pediatric data often have fewer participants and less diversity. This limits the ability of models to generalize across different pediatric subpopulations.

Ethical and Legal Issues

The use of pediatric data in research raises ethical concerns, particularly regarding informed consent and patient privacy. Additionally, the application of AI in clinical settings requires rigorous validation to ensure the models' accuracy and safety.

Model Generalization

Machine learning models trained on specific datasets may not always generalize well to new patient populations. This issue is particularly critical in pediatric pharmacotherapy, where patients' characteristics can vary widely [7].

Clinical Implementation

Translating predictive models from research into clinical practice requires careful consideration of healthcare infrastructure, such as the integration of AI tools into clinical decision support systems.

Future Directions

The future of personalized drug dosing in pediatrics lies in improving data quality, enhancing model accuracy, and integrating real-time monitoring systems into clinical settings. The incorporation of more diverse data sources, including genomic, metabolomic, and real-time physiological data, will enhance the precision of predictive models. Additionally, advances in AI, such as federated learning, may help overcome data privacy issues while enabling collaborative research across institutions [8].

CONCLUSION

The development of predictive models for personalized pediatric drug dosing represents a significant advancement in the field of pediatric pharmacotherapy. The application of AI, machine learning, and Big Data analytics holds great promise for optimizing drug doses, improving therapeutic outcomes, and minimizing adverse drug reactions in children. While challenges remain in data availability, model generalization, and clinical validation, continued research in this field offers substantial potential for transforming pediatric medicine. By moving towards more personalized and precise drug dosing strategies, healthcare providers can offer safer and more effective treatments for pediatric patients.

Conflict of interest

Authors declare no conflict of interest.

REFERENCES

1. Jones D, Anderson C, Smith K, 2020. Personalized pediatric drug dosing: Current state and future prospects. *Journal of Pediatric Pharmacology*, 45(2), Pages 134-142. Doi: 10.1109/ICISCT52966.2021.9670009.
2. Lee J, Park S, Kim H, 2020. Artificial intelligence in pediatric pharmacology: Optimizing drug dosing. *Pediatric Pharmacotherapy Journal*. 36(7), Pages 221-229.

3. Rothstein M, Hwang M, Song B, 2021. Real-time monitoring and predictive modeling in pediatric drug dosing. *Journal of Medical Informatic.* 9(4), Pages 450-460. Doi: <https://doi.org/10.1016/j.jbi.2022.104009>.
4. Van den, Anker J N, Turner R, 2020. Pharmacokinetics and pharmacodynamics in pediatric patients. *Clinical Pharmacology and Therapeutics.* 108(5), Pages 897-908. Doi: 10.1002/jcph.1284.
5. Ananya Anurakta Pattanaik, Puspanjali Mishra, Jatindra Nath Mohanty, 2021. Pediatrics anemia, haemoglobin, infants, iron, management. *Jour. of Med. P'ceutical & Allied. Sci.* 10 (6), Pages 3740 - 3742. Doi: 10.22270/jmpas.2021.V10I6.1552.
6. Zhang S, Liao X, Zhou X, 2021. Machine learning applications in pediatric drug dosing: A review. *Computational Biology and Medicine.* 118, Pages 103-112.
7. Varsha Tiwari. 2023. Nutrition in pediatric Nephrotic syndrome. *International journal of therapeutic innovation.* 1 (3}, Pages 0068 – 0074. Doi: <https://doi.org/10.55522/ijti.V1I3.0017>.
8. Zhou W, Xie Y, Tan M, 2020. Genetic factors in pediatric drug dosing: A pharmacogenomics perspective. *Pharmacogenomics Journal.* 20(2), Pages 169-177.